Chapter 18

Indexing Structures for Files

References/Resources:R. Elmasri, S.B. Navathe, "Fundamentals of Database Systems", 6th Edition, Pearson Education

The secondary index (in both on a key and nonkey field) is an ordered file with two fields.

- The first field is of the same data type as some nonordering field of the data file that is an indexing field.
- The second field is either a block pointer or a record pointer.

Secondary Indexes on key field

- It is has distinct value for every record.
- It is a dense index.
- In this case there is one index entry for each record in the data file, which contains the value of the field for the record and a pointer either to the block in which the record is stored or to the record itself.
- We cannot use block anchor because data file is unordered.

Disadvantages

- It is requires more storage space.
- The search time is long than a primary index, because of its larger no. of entries.

index entry

Secondary Index on Nonkey field Option3 most commonly used

- A single entry for each index field value, and also create an extra level of indirection to handle the multiple pointers.
- The pointer P(i) in index entry <K(i), P(i)> points to a disk block, which contains a set of record pointers; each record pointer in that disk block points to one of the data file records.
- It is a nondense scheme.

Contains all pointers of record 8

NOTE: Based on nonkey value (hence duplicate) and the data file is unordered.

Option 3

Advantage of Option3

Insertion and deletion of records in the data file is faster.

Disadvantage of Option3

Retrieval via the index requires one or more additional block accesses because of the extra level.

Multi level Index

•Multilevel Indexes

- It considers the index file, the first (or base) level of a multilevel index, as an ordered file with a distinct value for each K(i).
- Create a primary index for the first level; this index to the first level is called the second level of the multilevel index.
- The second level has one entry for each block of first level.
- The value bfr_i is called the fan-out of the multilevel index and it denoted by fo.
- All index entries are the same size with one field value and one pointer.
- If the first level has r_i entries and the blocking factor for the index is fo then, the no. of entries $r_2 = \left[\frac{r_1}{f_0}\right]$ are needed at the second level of index.
- Similarly, third level entries $r_3 = \left[\frac{r_2}{f_0}\right]$
- Multilevel scheme can be used in primary, clustering, or secondary—as long as the first-level index has distinct values for K(i) and fixed-length entries.

•B Trees

Data records of data file are either in internal node or in leaf node.

B+ Trees

Data records of data file are exits in leaf node.

No need to study algorithms.

Go through the examples of section 18.3

Reference :-R. Elmassi, S.B. Navathe, Fundamentals of Pathbase systems (6th edition), peasson Education. chapter - 16_ Part I cover. A set of functional dependency F is said to cover another set of functional dependencies E if every FD in "E is also in F, i.e, if every dependency = in E can be inferred from F. we can also say that E is concered by F. 1 1 <u>Equivalence</u>: Two evet of functional dependencies dependencies E and F are equivalent if $E^+ = F^+$. 1 1 i, Equivalence means that every FD in E can be inferred from F and vice - versa. i.e. E is equivalent to F, if both the conditions - E covers F & F covers E - hold. Eg. For the following set of FD's ... check whether FEG or GCF or F=G or F=G. F=3A->C,AC->D, Pero 1 $E \rightarrow AD, E \rightarrow H_{i}^{2}$ G= ZA -> CD, E->AHZ

from (1) G= A->CD F=A->C E->AH $AC \rightarrow D$ E -> AD $E \longrightarrow H$ $\begin{cases} AC_3^+ = SACD_3^- \\ SE_3^+ = SEADHC_3^- \\ SE_3^+ = SEADHC_3^- \\ \end{cases}$ SAST = SACD3 Dince, FSG & GSF i. F=G. 9. Find whether the two F.Ds (F&G) set are equivalent or not or whether one covers the other. (D. F: SA -> B, B-> C, AB-> D3 $G: \{A \rightarrow B, B \rightarrow C, A \rightarrow C, A \rightarrow D\}$ ii). $F: A \rightarrow B, B \rightarrow C, A \rightarrow C$ $G: \{A \longrightarrow B, B \longrightarrow C, A \longrightarrow D\}$

UiD. F=ZA->B, B->C, C->AS G=SC->B, B->A, A->CS Minimal conter It is a set of functional Minimal cover. A minimal cover of a set of functional dependencies E is a minimal eset "dependencies that is equivalent to E we can always find at least one minimal cover F for any set of dependencies E. Minimal cover means optimizing the det of F. D's; just like you can optimize the abready written code.